Photocatalytic graphitic carbon nitride-chitosan composites for pathogenic biofilm control under visible light irradiation

نویسندگان

چکیده

Photocatalysis holds promise for inactivating environmental pathogens. Visible-light-responsive composites of carbon-doped graphitic carbon nitride and chitosan with high reactivity processability were fabricated, they can control pathogenic biofilms environmental, food, biomedical, building applications. The broad-spectrum biofilm inhibition eradication the photocatalytic against Staphylococcus epidermidis, Pseudomonas aeruginosa PAO1, Escherichia coli O157: H7 under visible light irradiation demonstrated. Extracellular polymeric substances in most resistant to oxidation, which led reduced performance removal. 1O2 produced by was believed dominate inactivation. Moreover, exhibited excellent inhibiting development urine, highlighting developed from multiple bacterial species. Our study provides fundamental insights into new composites, elucidates mechanism how photocatalyst reacts a microbiological system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray p...

متن کامل

Immobilizing photogenerated electrons from graphitic carbon nitride for an improved visible-light photocatalytic activity

Reducing the recombination probability of photogenerated electrons and holes is pivotal in enhancing the photocatalytic ability of graphitic carbon nitride (g-C3N4). Speeding the departure of photogenerated electrons is the most commonly used method of achieving this. To the best of our knowledge, there is no report on suppressing the recombination of photogenerated electron-hole pairs by immob...

متن کامل

Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light.

Platinum (Pt) nanoparticles with <4 nm diameter loaded on graphitic carbon nitride (g-C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to...

متن کامل

Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride**

The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hazardous Materials

سال: 2021

ISSN: ['1873-3336', '0304-3894']

DOI: https://doi.org/10.1016/j.jhazmat.2020.124890